Building a Geomechanical Framework for Interpreting DAS Measurements

Introduction to Fiber Optic Distributed Acoustic Sensors (DAS)

- DAS is designed to measure signals at a high spatial resolution (~ 1 m) over large distances (multiple km)
- DAS uses the fiber itself as a sensor to measure strain (or strain rate) along its length
- Its development has opened up a massive source of data for subsurface characterization / monitoring
- Questions:
 - How can we optimize the performance of DAS?
 - How do we interpret the data we collect?

DAS Examples – Microseismicity

- Comparison of traditional geophone and DAS monitoring programs (Hull et al., 2017)
 - Sensors located in an offset vertical well, with hydraulic stimulations in a nearby horizontal well
 - DAS config: L = 760 m, L_{gauge} = 10 m, F_s = 2 kHz
 - Geophone config not specified (lower resolution)
 - Microseismic events recorded during an example stage
 - DAS = 31 events (minimum $M_w = -2$)
 - Geophones = 785 events (minimum $M_w = -2.68$)
 - Note: different event detection algorithms used

DAS Examples – Waterfall Plots and Low-Frequency Strain

- Hydraulic fracture geometry characterization attempts (Jin and Roy, 2017)
 - Fracture stimulation and DAS in adjacent horizontal wells
 - DAS configuration: $L_{\text{sample}} = 1 \text{ m}$, $L_{\text{gauge}} = 5 \text{ m}$, $F_{\text{s}} = 10 \text{ kHz}$
- Waterfall plots
 - Vibrational energy for a given frequency band
 - Excited by the opening and fluid flow in fractures?
 - Tend to be messy and difficult to interpret
- Low-frequency strain measurements
 - Carefully filter the data to estimate near-DC component of strain rate (this example: f < 0.05 Hz)
 - Matches the psuedostatic fracturing process

Large-Scale Geomechanical Modeling

- Goal: Develop a framework for interpreting DAS measurements that is robust, quantitative, and grounded in geomechanics
- Due to its topicality, focus our initial efforts on hydraulic fracture monitoring
- Implement a model of DAS in GEOS (LLNL)
 - HF modeling from near-wellbore to reservoir scales
 - Geothermal energy production
 - Microseismicity
 - Etc.

GEOS Fiber Modeling

Fiber model:

- The scales of interest are way too large to explicitly mesh the fiber
 - Instead, define a virtual fiber as a set of nodes in the underlying FE mesh
 - Assume that the fiber is perfectly coupled to the rock and is insensitive to shear
- Record the nodal displacement along the virtual fibers at high frequency
- Use central-difference operators to calculate strain and/or strain-rate
- Apply an arbitrary gage length applied via a convolutional filter during post-processing
- The target DAS signals are often very small (~1 nε/s)
 - Challenging constraint for large heterogeneous models, explicit discontinuities
 - We use a combination of implicit/explicit time-stepping to bring the model into an initial equilibrium state
 - Before loading, we track the drift/noise in the model and require a S/N of at least 10

GEOS Fiber Modeling

- Instead of looking at a particular case study, focus on a set of idealized models
 - Geologic model sensitivity
 - Stimulation design sensitivity
 - Target low-frequency DAS on three fibers (f << 1 Hz)

Geological Model Sensitivity - Design

- Base model:
 - 50 m tall PKN fracture propagating from a horizontal wellbore
 - In-situ stress state is normal
 - Fluid injected into a single perforation cluster for 80 minutes at 0.05 m³/s
- Increase the complexity of the model to isolate signals of interest in the DAS

Geological Model Sensitivity – HF Generation Examples

Geological Model Sensitivity – Conclusions

- Low frequency DAS measurements may be used to constrain fracture geometry
- Synthetic DAS measurements may be used to design/optimize field deployments
- Simultaneous measurements in horizontal (common) and vertical offset wells (less common) allows best resolution
- DAS measurements may also be a useful tool for monitoring the interaction of fractures with barriers

Future Applications – Machine Learning

- Current effort to design machine learning approaches (CNN) to interpret these data
- Use our approach to generate a labeled training dataset:
 - Length/height of generated fractures
 - Location/timing of triggered microseismic events
 - Interaction with fracture barriers
 - Proppant and Multiphase related phenomena

:

GEOS THM Coupling Diagram

Proppant Placement Sensitivity – Design

- Begin with Model II (stress barriers) as a reference
 - Incorporate a more realistic pumping schedule into the design
 - Modify the fluid leakoff rate into the surrounding formation
 - Track Changes in the DAS measured along the horizontal fiber F_{H1}
 - Compare to distribution of proppant in the generated fracture

Leakoff Sensitivity

Proppant Placement Sensitivity – Results

Proppant Placement Sensitivity – Results

